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The wiple wave Ty is bounded by the planes

YBViw—Dh—Y+ D8+ —DM—V)=0
Yoy — DB+ Y3+ D — @ — G+ M)+ %@y —1)V =0
Yy =0~ %YV3g+ e+ -1+ M—V)=0

Y Vil — D Eh =Yy + D E+ Y (y— )My —2V) =0
8= —V (piston)

All of the side faces of the regions in the lower half of Fig. 2 are orthogonal to the
piston 3=~V
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The temperature and density fields associated with the motion of an ideal gas acted on

by an expanding piston have singularities at the piston surface [*™3]). These arise through
_ nonallowance for heat conduction by the gas, which plays the determining role near the
. surface of the piston.

We shall solve the problem of motion of a heat-conducting %as acted on by an expan-

dir(xig heat~insulated piston by the method of interior and exterior expansions. To this

end we comstruct the principal term of the interior asymptotic expansion by splicing it

with the solution for an ideal gas which constitutes the principal term of the exterior
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asymptotic expansion, This ﬁields a solution free from singularities, A similar solution
for the swong-detonation problem was obtained by Sychev ~ [4],

f. Let a plane, cylindrical, or spherical piston expand according to the law

y = Atk (4, k = const)

in an undisturbed gas of density p, = const,
We assume that the gas is viscous and heat-conducting, and that its viscosity p is
related to the enthalpy A by the expression

p = Ch™ (C, m = const)

The Prandtl number o = const. Neglecting counterpressure and assuming that the
surface of the piston is heat-insulated, we infer that the determining parameters are
Po, C, A. The determining parameters, the time ¢, and the space coordinate y can
be combined into two dimensionless variables,

AAm-1)
Ei=—— E,:—Ci—!—- @=1—2(—1)(m—1) {t.1)
Pot

From (1.1) we infer that for a > 0 the effect of viscosity and heat conduction on
gas flow diminishes with time; for @ = 0 the problem becomes self-similar even with
allowance for viscosity and heat conduction, and for @ < 0 the effect of viscosity and
heat conduction increases with time.

From now on we shall consider the case q >> 0, which is of the greatest interest and
corresponds to the real values

hS<m<L, k>2/(v+3)

where v =0,1,2, respectively, for the plane, cylindrical, and spherical cases.
We can combine the determining parameters into quantities having the dimensions
of time and length which we shall use as our scales,

ty== [CptAXM-DI/ & [ [Chpyk 211/ & 1.2)

Denoting the velocity by » and the pressure by p, we introduce dimensionless values
for the independent and dependent variables,
=171, y°=pl", = o7t (1.3)
P°=ppo it p° = ppyt,  h° = kMt
Let us write the Navier-Stokes equation for a one-dimensional viscous heat-conduct-~

ing gas in dimensionless parameters (the mark ° identifying dimensionless quantites
will be omitted for simplicity),

v v ap 3 mfdo0 2 v K™ [ av 3_)
(gt m=wGe - r (G -7

oh dh ap ap 1 _, 0 (., moh
9(737+°3;)='57+:’7;;+?y “"5;;(“ ’a;)+

oo (B )]~
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a a —1 ¢
a1 (PY") + 55 (Poy’) =0, p=L:r—ph. 'r=f (1.4)

Let us convert from the Eulerian variables y, ¢ to the Lagrangian variables $,t. By
virtue of the continuity equation these are related by the expressions

ij

2 X . a
— — —_ a—= 5
y=const ¢ l-b:-c)nlt PYY B¢ » ay Y oy (1.9)

a

System (1.4) now becomes

v , P . 9 4 v 2 v\
Por +PY g =r¥ W["’"(’gpy"w‘——gvy +

i v »
+2v— (py" - ';)

y
oh dp p @ S ,,.[( ,au)a
P—ar=7r+?7¢‘(””"” )“” PV ay) T
v\3 2 , o Y\
+v(7) —g'hm(P!l % +Vy)
—1
PVV’Q:’-’ ?a%=”’ p=I—T—-ph (1'6)

Now let us find the principal terms of the asymptotic expansions of the solution of
system (1,6) as ¢ — oo which satisfy the initial and boundary conditions.

2. We shall attemnpt to find the exterior asymptotic expansion in the form

2k
y=a* [Yo(n) +0 (™), v =T at* N (Vo(n) +0(7%)
2k? 1
p= 1 2 D [Po(n) 4077, p= % [Ro(n) +0(™)]  (2.1)

27k? :
b= Gy D (Ho (3) + 0 (7]

n="+1) ao"(“"')t'("")"\p, a4, = const
Substituting (2. 1) into (1. 6) and collecting the principal terms of the equations, we
obtain a system for determining the functions Y, (n), Vo (), ..., He(n),
(k—=1)Vy— 1 4 v)knVy + (1 + ) kY, Py =0, (n*YPyR,Y) = 0

1 ‘
(1 4+v) :—i—iﬂoww =1, Yo—(+v)aYy =

2(1~k)
re=niis (3= i)

(the prime indicates the derivative with respect to n).
The required functions satisfy the following conditions at the shock wave:

—— .V,
T+1 2.2)

Yo(1) =Vo(1) = Py (1) = Ry (1) = H, (1) =1 (2.3)
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System (2, 2) with boundary conditions (2. 3) describes the self-similar flow of an

ideal gas acted on lt)g an expanding piston.
The behavior of the solution of system (2.2) near the piston surface (n == 0) is desc-

ribed by the relations
Yo=Yy + Yon'™ [ + 0 (n%)], Vo = Voo + Vorn'™® [1 + 0 (n%)]
Ho=Houn™® [1 4 0(n)l, Ry= Ren® [{ + O (n)]
Py = Py + Pynit + 0 (n'7H)] (2.4)
s={ —~§ for § >0, e=1 for f<0

¥ —1
1
Voo=1%-—yoo» Roo=Poo”Y. Hyg == Py Y

G+ —4k
2k (1 4 v)

Yo = T—1
AT @HN)E+ V(I —B)

—1
Vor =15~ (1 + 9™ (| =)™ — 1] Yo "Paa /¥, ap= Yo'

Yoo© val-l 1Y, Py= Yoo'™

The constants P, Yy, can be found from the complete solution of system (2. 2) with
boundary conditions (2. 3) of [*}.

3. To find the interior asymptotic expansion in the interior flow region we introduce
the quantity § = ,,;", where § > 0, as our independent variable of order unity. Ma-
king use of the principle of splicing interior and exterior expansions [4#], we can exp-
ress the limits of the exterior expansion in terms of the variables of the interior expan-
sion

y = aot* (Yoo + Yut¥'=2 22073 (1 4 0 (= %)))

V=" 2_:_‘ T 00t" 7 (Voo + VaN'=? 30=B) (1 4 0 (=) o
P=3 i 1 kg1 [Pog + PuNE™ (1 4 0 (2 0-3))) '
= E—: R NP PR (L 0%y
h= (7_2—1{'-%7 a?t¥0) HoN~ B ®8 (1 L0 Y))

We determine 8§ from the condition that the interior region is that nei%'ttl]borhood of
the piston surface in which heat conduction plays the determining role. e energy
equation then implies that

a
=3 gm—1 "
From (8.1) we infer that the interior asymptotic expansion must be found in the form

v = agtk [yo (N) + 11 (N) £33 (1 1 0 (1=%) ]
aolk-l [20 (N) + 21 (V) 30-8) ¥+0 (‘-ba))]

_ 2k
PET A
2k3 )
P = T+ 1 aoﬂtﬂ(k-l) (2o (N) + 2 (V) 3 It +0(‘—6(1_g)))]
1 -
"=:i1 o (M) (1 +0 (™)

3.2)

k
h= (7%_:)’ a¥F-UWB o (N) (1 + 0 ()]
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From the condition of splicing of expansions (3.2) with the exterior expansion we
find that

Yo (N) = Yy, Vi (N) =Yg NYB, Vg (N) — Voo
vy (N) — Vo, N178, o (N) = RoNB,  py (N) — Py (3.3)
PL(N) = PulN, Ry (N) — HeNP

as N = oo,

Substituting expansions (3, 2) into (1. 6) and combinintg terms containing equal powers
of ¢, we obtain a system of equations for determining the coefficients of the internal
expansion

2
yo =0, yo=,r_+Tl’o. P =0, Po==poho

Bho -+ Nhy' + Byo®py (he™ *hy') =0

T+1 .
(1 +v) 7 Poo'nr’ =1

2k
k=80 —B)]yi+ 8 —k (A + V)] Ny’ =77 =
(k—1) v+ yo* k(L + %) pr' =0 (3.4)

T 21 1™ (r+1) (248 (m—1)]
B =g aX™FUR™ (1 4 vy [(x+1>'] T—nEd+wk=1 >°

Solving system (3, 4) with boundary conditions (3.3) and the conditions
hoi=0, y1=0, v1=0
at the piston surface (N = 0) , we obtain
¥o = Yo, Vo = Voo, Po = Poo, Po = Poghy™? (3.5)

The function ke (V) can be determined from the fifth equation of system (3.4) and
the boundary conditions

hy (0) =10,  hy(N) = HyN® as N o oo
The invariant wansformaton
By — Cihg, N = C, ™11y (3.6)

of the equation and boundary condition for N = 0 reduces the boundary value problem
for hy (N) to the Cauchy problem in which k4 (0) and bk, ’ (0) = 0. Moreover, on
making the substitution

N = N, (BY o Poo) * 3.7)
in the fifth equation of system (3.4), we obtain the equation

(he™hy')’ -+ Nihy' + Bhy = 0 (3-8)
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If we have a system of integral curves of Eq. (3.8) which satisfy the initial conditions
ho (0) = 1, hy" (0) = O for various values of m and 8,y KM, — 2P Y,
then we can use substitution (3.7) and invariant transformation (3. 6) to obtain solurions
of the fifth equation of system (3.4) for various values Yym< 1, k> 2/ (v+ 3),
y>1, v= 01,2, satisfying the appropriate conditions of splicing of the exterior and
interior expansions. .

We note that Eq. (5.4) derived in [*] with the initial condition for N = 0 has a si-
milar invariant wansformation, which means that the solution of the boundary value
problem also reduces to the solution of a Cauchy problem.

Solving the remaining equations of system (3.4), we obtain

NEEDIFT—
—1
h= 2(1_—+TW._—3) Po™Yoo {1 — (1 —B) (1 + V)] Nho +
F [t —8 (1 —B) k™) BY 0™ Pooa™ 1hy'}
Py = PyN + C, (Cy = const) (3.9)

B Yoo~ Poo™t (Nho + BY oo™ Poohe™ thy')

The density and enthalpy at the piston surface are given by the relations

p (0)

k (0)
P2 h

= Pooho 1 (0) ™%, - =ha (0) 158
where p, and R, are the density and enthalpy at the shock wave surface.
4. In the particular case where f = — 1, m = 1, which corresponds tok = 2 f (2 —

— ¥) in the plane case, it is possible to obtain the exact solution of the fifth equation
of systemn (3. 4) with the boundary conditions

N
1
ho= Huw (%) h [e“'/ LA bNS e /-°"'d1v]
0

b= (BYo0? Poo)~! (4.1)
Now, substituting (4.1) into (3.9), we obtain (4.2)
N
= v —! Yoo Pt (2 )'/' BN?— 1)\ e/ ®N'AN 4 NeH N
n=Ernarva—p w fo \we) (GM-D)e + N
0

Formulas (4.1) and (4.2) describe the enthalpy field in the neighborhood of the pis-
ton surface. The temperature at the piston surtace is here defined by the relation

s
T = T,Hy ( nﬁb) th,

The quantity K, can be expressed in terms of the Py, which is determined by sol-

ving the correspondin§ problem for an ideal gas.
In the more ?enera case where m = 1 and B is arbitrary the solution can be expre-

ssed in terms of the degenerate hypergeometric functions @ (q, b, 1)
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B 1 !
h°=C,®(?, 7 _-—2‘——)

rT—1
n=ErEna+vad

o [ (B 1 N
__B)C'YW Pwl[ozr?o'— 2)"‘

60 (3+1, 7> =) ¥

1 1 N,?
n= 2—(1-_—*_%:3—) C3Po ™Yoo " {[1 —(t=f 49 (‘Bz‘ R '_2‘-) +
+i—sa—prpe(fi1, 3, TN 4.3)
C;= Hoo M (BYooszoo)_'/ﬂ‘ = const

T (1/,) 24P

Here N, is given by relation (3.7) and T (s) is 2 gamma function, For f = —1
relations (4. 3) become (4.1), (4.2).

The author is grateful to S. V, Fal'kovich and V.V, Sychev for their useful comments
on the present paper,
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