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The triple wave Ts is bounded by the planes 

%.rnY - f) E¶ - l/r (y + f ) L + v* (y - f MM0 - fl = 0 

I/* (7y - I) &r + V,r/T(y + i) & - (y - WE, + MO) + Ys (3Y - f)V = 0 

‘1. (7Y - i) El-” l/,vs (y + 1) &, -I- (y - i)(&, + MO - v) = 0 

v*o-iy - i) E, - l/r (y + i) r& + l/r (y - iw, - 1oM9 = 0 
El - - V (piston) 

All of the side faces of the regions in the lower half of Fig. 2 are orrhogonal to the 
piston E, = - V, 
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The temperature and density fields associated with the motion of an ideal gas acted on 
by an expanding piston have singularities at the 
nonallowance for heat conduction by the gas, R. 

iston surface 1’“). These arise through 
w ich plays the determining role near the 

surface of the piston. 
We shall solve the problem of motion of a heat-conducting 

din heat-insulated piston by the method of interior and exter or expansions. To this 
(B 

“i 
as acted on by an expan- 

en we constzuct the principal term of the interior asymptotic expansion b splicing it 
with the solution for an ideal gas which constitutes the principal term of tl! e exterior 
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asymptotic expansion. This 
for the strong-detonation pro i 

ields a solution free from singularities. A similar solution 
lem was obtained by Sychev 1.1. 

1. Let a plane, cylindrical, or spherical piston expand according to the law 

y - .4tk (A, k = const) 

in an undisturbed gas of density p. = const. 
We assume that the gas is viscous and heat-conducting, and that its viscosit)i p is 

related to the enthalpy h by the expression 

p = CP (C, m = conat) 

The Prandtl number u = const. Neglecting counterpressure and assuming that the 
surface of the piston is heat-insulated, we infer that the determining parameters are 

PO, C, A. The determining parameters, the time t , and the space coordinate y can 
be combined into two dimensionless variables, 

C&+1) 

Pota 
(a---f--2(k-ii)@-ii) tt.*) 

From (1.1) we infer that for a > 0 the effect of viscosity and heat conduction on 
gas flow diminishes with time; for a = 0 the problem becomes self-similar even with 
allowance for viscosity and heat conduction, and for a < 0 the effect of viscosity and 
heat conduction increases with time. 

From now on we shall consider the case a > 0, which is of the greatest interest and 
corresponds to the real values 

%<m<f, k>2f(v-i-3) 

where Y = 0,1,2, respectively, for the plane, cylindrical, and spherical cases. 
We can combine the determining parameters into quantities having the dimensions 

of time and length which we shall use as our scales, 

Denoting the veloci 
K 

by Y and the pressure by p, we introduce dimensionless values 
for the independent an dependent variables, 

P = U,_‘, Y0 = Id;‘, v” = vt,l, -1 , (1.3) 

P ’ = Ppo-‘ll’ll-‘, p” = ppob’, ho = h+,-’ 

Let us write the Navier-Stokes equation for a one-dimensional viscous heat-conduct- 
in 

? 
gas in dimensionless parameters (the mark 

WI 1 be omitted for s~plici~), 
o identifying dimensionless quantities 

+; ; h” $&-~t -=- 
1 ( 

ah 
+vay = ) 

aP 
a, $fv$(y”hm$)+ 

+ 2hm [($r +V 
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$ (PY’) + $ (PW’) = 0, 
-1 

P = T+Ph# 
C, r=- 
% 

(1.4) 

Let us convert from the Eulerian variables y, t to the Lagrangian variables @, t . By 
virtue of the continuity equation these are related by the expressions 

System (1.4) now becomes 

ay -1 pyvs=i, ar , p=‘+-ph -_=* 

(I -5) 

(I.61 

Now let us find the principal terms of the asymptotic expansions of the solution of 
system (1.6) as t -+ oo which satisfy the initial and boundary conditions. 

2. We shall attempt to find the exterior asymptotic expansion in the form 

Y = 4 WO (4 + 0 (1”) I, v = $& a0rk-n [ vo (n) + 0 (1-y J 

W’ 
P = -aoMk-l) [PO (n) + O_(P)], r+l 

r+l - -_I [R4 (4 + 0 (01 

h = (& u&a(k-l) [Ho (.,;:(r=,, 

(2.1) 

n = (v + 1) ~-@+“)t~l+“%p, alJ = const 

Substituting (2.1) into (1.6) and collecting the principal terms of the equations, we 
obtain a system for determining the functions Y, (n), V, (n), . , ., H, (n) , 

(k - 1) J’, - (1 + v) knVo’ + (I + v) kY,” P,’ = 0, (nb&-y - 0 

(1 + v) s ROYoVY; 1 i, Yo-(i+v)nYo’= 
2 

- vo 
r+1 

(2.2) 
PO = &Ho 

2 (1 - k) 
p=k(l +v)I > 

(the prime indicates the derivative with respect to n). 
The required functions satisfy the following conditions at the shock wave: 

Yo (1) = v, (i) = PO (1) = Ro (i) = Ho (1) = i (2.3) 
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System (2.2) with boundary conditions (2.3) describes the self-similar flow of an 
ideal gas acted on b an expanding piston, 

The behavior of x e solution of system (2.2) near the piston surface fn =I 0) is desc- 
ribed by the relations 

Y. - Ya + Y,,n 1-B Ii + 0 (n’)], V, - Yea + V,,n’-a 11 + 0 (Is’)] 
Ha = f&n -Ir ]l + 0 WI, RO = Rod Ii + 0 (41 

P, = Ps, + P,,n[l ‘f 0 (d--q 

r-i-p for 8 > 0, r==i for B < 0 

V,=7$Y,, Rw=Poo’/Y, Hoe= pm+ 

. , 

(2.4) 

T-1 
Y~l=(~+~)(~+~)(~_pp) YmLyPw?‘y~ po,\” (T + 1) (1 - k) 14 

2k (1 + v) yw 
VOl = 

T---1 
2 [(i + v)” (1 - p)-l - 1 ] Yw-“Pm-l / y, 00 = Y&-l 

The constants P,, Y, can be found from the complete solution of system (2.2) with 
boundary conditions (2.3) of 13]. 

3. To find the.interior asymptotic expansion in the interior flow re ion we introduce 
the quantity N = a:f, where 6 > 0, as OUI independent variable o B order unity. Ma- 
king me of t.& princrple of splicing interior and exterior expansions [VI, we can exp- 
ress the limits of the exterior expansion in terms of the variables of the interior expan- 
sion 

t/ = a& [Y, + YolNl- fi t-a(l-9) (1 + 0 (1‘ 9) 1 
2k 

tJ=gW k-1 [V, + VOlN’4 td(“@) (1 + 0 (t-y)] 

2 (3.1) 

*=r+1 - k%0a12(L-‘) [Pa, + Po,Ntd (i + 0 (rd(1-3)))] 

7+1 
P= -&Na f+a[i +O(t-*)] 

h = (;ik;; 1 a&@-‘) H,,,N- B tbB [i + 0 (f- ‘)] 

We determine d from the condition that the interior region is that nei hborhood of 
the piston surface in which heat conduction plays the determining role. %I 
equation then implies that 

e energy 

a= Z&n--1) >O 

From (3.1) we infer that the interior asymptotic expansion must be found in the form 

y = aotk IYO (N) + YI (N) rPcl+) (1 + 0 (L-“)) I 
u=-& up I~oP’)-t~1W) l -e(l-fJ) p+ 0 (t-y)] 

(3.2) 

* = _$ ($,'lr¶("-1) LA (NJ + ~1 (NJ td (1 + 0 (~d’l-O’))l 

Ts-i t-t+p,+f) [I + 0 (r- *)I p=+r_i 

h_ 2+ 
- (r &+l)caB ho (N) If + 0 (t- $11 
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From the condition of splicing of expansions (3.2) wifh the exterior expansion we 
find that 

of 
Substituting expansions (3.2) into (1.6) and combinin terms containin equal powers 

1, we obtain a system of equations for determining ti! e coefficients 0 fg the internal 
expansion 

yo’=O,, yo 
2 

=r+1”0’ po’=O, Po=Poho 

f& + Nh,’ + Byo”po (ho”+lh;)’ = 0 

(1 + v) 2 poYoyyi = 1 

[k - 6 (I -I$] ~1 + [6 -k (1 -I- V)] Nyi = $& 01 

(k--1)oo+y,,“k(1+~)~‘=0 (3.4) 

B = $ ool(ml+l) m (T+l)V+B(m--i)I 
(7-1)[2(1 +v)k-i] ” 

Solving system (3.4) with boundary conditions (3.3) and the conditions 

ho’ = 0, @I = 0, Ul = 0 

at the piston surface (N = 0) , we obtain 

lo = yoo, uo = v,, PO = PO01 PO = pooh,-’ (3.5) 

The function ho (N) can be determined from the fifth equation of system (3.4) and 
the boundary conditions 

hi (0) = 0, ho (N) -, &N-a as N-+oo 

The invariant aansformation 

ho --, C,ho, N _, Cl”“-l”N (3.6) 

of the equation and boundary condition for N = 0 reduces the boundary value problem 
for ho (N) to the Cauchy problem in which b (0) and ho ’ (0) = 0. Moreover, on 
making the substitution 

N = Nl (BYma’P& (3.7) 

in the fifth equation of system (3.4), we obtain the equation 

(h,m-lh,‘)’ + N,h,’ + ph, - 0 (3.3) 
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If we have a system of integral curves of Eq. (3.8) which satisfy the initial conditions 
ho (0) = i, ho (0) = 0 for various values of m and fi, (l/, < m Q I, - 2 < fl < I), 
then we can use substitution (3.7) and invariant transformation (3.6) to obtain solutions 
of the fifth equation of system (3.4) for various values ‘/,<m< i, k > 2 / (v -f- 3), 
y > 1, v - 0,1,2, satisfying the appropriate conditions of splicing of the exterior and 
interior expansions. 

We note that Eq. (5.4) derived in [4j with the initial condition for N = 0 has a si- 
milar invariant transformation, which means that the solution of the boundary value 
problem also reduces to the solution of a Cauchy problem. 

Solving the remaining equations of system (3.4). we obtain 

7-f 
y’=(T+1)(l+w-PP) Yoo-"Pm-l (Nho + BYoo"P~om-'h,,') 

T--1 
VI- 2 (, + v) (, _p) ho-‘Yoo-“([I - (1 - P) (i + @I Nho + 

+ [ 1 - 6 (t - p) k-l] BY~aYP&,m-lh,,‘} 

PI - Pa,N + G (C, = const) 

The density and enthalpy at the piston surface are given by 

(3.9) 

the relations 

P (0) - = PgQho-l(o) t-*B , 
Pt 

h (0) - = ho (0) t’@ 
h; 

where ps and h, are the density and enthalpy at the shock wave surface. 

4. In the particular case where fl = - 1, m = 1, which corresponds to k = 2 f (2 - 
- y) in the plane case, it is 
of system (3.4) with the boun B 

ossible to obtain the exact solution of the fifth equation 
ary conditions 

,-‘l,bFT +bNf e-’ / &N’dN 1 0 
b = (sYo6’“~m)-~ 

w 

Now, substituting (4.1) into (3.9), we obtain (4.2) 

Formulas (4.1) and (4.2) describe the enthal y field in the nei 
P. 9 

hborhood of the pis- 
ton surface. The temperature at the piston sur ace 1s here define by the relation 

t -%. 

The quantity H, can be expressed in terms of the P, which is determined by sol- 

can be expre- 
ssed in terms o 
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h =&Q, ii 0 ( i_ 
2’ 2’ 

_T 
> 

vl=(r+i) (&:, (1-P) c,Yoo‘yP~-’ a 
[( 

P 1 Nl’ 
2_, p ( - - 2 ) 

- 

--p++i, +‘, -F)] N 

T+i 
n = 2 (, _t: q (1 _.P) Caho-lYoo-y (Ii - (i -P) (t + 91 Q ($ , ; > - =y) + 

+11-a(,-p)k-l]PO)(B+I, ;, +)} N (4.3) 

C,= Ho0 
rpfr--“*P) -‘/,bl 
r (I /! *) 2:/&3 (Bym2’pm) 

. = const 

Here Nr is given by relation (3.7) and T’ (I) is a gamma function. For b = - i 
relations (4.3) become (4.1)) (4.2). 

The author is grateful to S. V. Fal’kovich and V. V. Sychev for their useful comments 
on the present paper. 
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